数学教学设计

时间:2024-08-29 22:41:18
数学教学设计(精选15篇)

数学教学设计(精选15篇)

作为一位优秀的人民教师,通常需要准备好一份教学设计,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。一份好的教学设计是什么样子的呢?以下是小编精心整理的数学教学设计,仅供参考,大家一起来看看吧。

数学教学设计1

提出问题:

新课程认为知识不是单方面通过教师传授得到的,而是学生在一定的情境中,运用已有的学习经验,并通过与他人(教师指导和同学的帮助)协作,主动建构而获得的。它强调以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。通过多年教学实践和对新课程的认识,我认为若遵循这个原则进行数学课堂教学,学生的学习将是一种高效的活动。

教材中的地位:

本节内容是在指数范围扩充到实数的基础上引入指数函数的,而指数函数是高中研究的第一种具体函数。是在初中已经初步探讨了正比例函数,反比例函数,一次函数,二次函数的图像和性质的基础上,在进一步学习了函数的概念及有关性质的前提下,去研究学习的。重点是指数函数的图像及性质,难点在于弄清楚底数a对于函数变化的影响。这节课主要是学生利用描点法画出函数的图像,并描述出函数的图像特征,从而指出函数的性质。使学生从形到数的熟悉,体验研究函数的过程与思路,实现意识的深化。

设计背景:

在新教材的教学中,我慢慢体会到新教材渗透的、螺旋式上升的基本理念,知识点的形成过程经历从具体的实例引入,形成概念,再次运用于实际问题或具体数学问题的过程,它的应用性,实用性更明显的体现出来。学数学重在培养学生的思维品质,经过多年的数学学习,学生还是害怕学数学,尤其高中的数学,它对于学生来说显得很抽象。所以如果再让让学生感到数学离我们的生活太远,那么将很难激发他们的学习爱好。所以在教学中我尽力抓住知识的本质,以实际问题引入新知识。另外,就本章来说,指数函数是学习函数概念及基本性质之后研究的第一个重要的函数,让学生学会研究一个新的具体函数的方法比学会本身的知识更重要。在这个过程中,所有的知识都是生疏的,在大脑中没有形成基本的框架结构,需要老师的引导,使他们逐渐建立。数学中任何知识的形成都体现出它的思想与方法,因而授课中注重让学生领悟其中的思想,运用其中的方法去学习新的知识,是非常重要的。

教学目标:

一、知识:

理解指数函数的定义,能初步把握指数函数的图像,性质及其简单应用。

二、过程与方法:

由实例引入指数函数的概念,利用描点作图的方法做出指数函数的图像,(有条件的话借助计算机演示验证指数函数图像)由图像研究指数函数的性质。利用性质解决实际问题。

三、能力:

1.通过指数函数的图像和性质的研究,培养学生观察,分析和归纳的能力,进一步体会数形结合的思想方法。

2.通过对指数函数的研究,使学生能把握函数研究的基本方法。

教学过程:

由实际问题引入:

问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,?1个这样的细胞分裂x次后,得到的细胞的个数y与x之间的关系是什么?

分裂次数与细胞个数

1,2;2,2×2=22;3,2×2×2=23;????;x,2×2×……×2=2x

归纳:y=2x

问题2:某种放射性物质不断变化为其它物质,每经过1年剩留的这种物质是原来的84%,那么经过x年后剩留量y与x的关系是什么?

经过1年,剩留量y=1×84%=;经过2年,剩留量y=×=?经过x年,剩留量y=

寻找异同:

你能从以上的两个例子中得到的关系式里找到什么异同点吗?

共同点:变量x与y构成函数关系式,是指数的形式,自变量在指数位置,底数是常数;不同点:底数的取值不同。

那么,今天我们来学习新的一个基本函数:指数函数

得到指数函数的定义:定义:形如y=ax(a>0且a≠1)的函数叫做指数函数。

在以前我们学过的函数中,一次函数用形如y=kx+b(k≠0)的形式表示,反比例函数用形如y=k/x(k≠0)表示,二次函数y=ax2+bx+c(a≠0)表示。对于其一

般形式上的系数都有相应的限制。问:为什么指数函数对底数有这样的要求呢?若a=0,当x>0时,恒等于0,没有研究价值;当x≤0时,无意义。

若a

若a=1,则=1,是一个常量,也没有研究的必要。

所以有规定且a>0且a≠1。

由定义,我们可以对指数函数有一初步熟悉。

进一步理解函数的定义:

指数函数的定义域:在我们学过的指数运算中,指数可以是有理数,当指数是无理数时,也是一个确定的实数,对于无理数,学过的有理指数幂的性质和运算法则都适用,所以指数函数的定义域为R。

研究函数的途径:由函数的图像的性质,从形与数两方面研究。

学习函数的一个很重要的目标就是应用,那么首先要对函数作一研究,研究函数的图像及性质,然后利用其图像性质去解决数学问题和实际问题。根据以往的经验,你会从那几个角度考虑?(图像的分布范围,图像的变化趋势)图像的分布情况与函数的定义域,值域有关,函数的变化趋势体现函数的单调性。引导学生从定义域,值域,单调性,奇偶性,与坐标轴的交点情况着手开始。

首先我们做出指数函数的图像,我们研究一般性的事物,常用的方法是:由特殊到一般。

我们以具体函数入手,让学生以小组形式取不同底数的指数函数画它们的图像,将学生画的函数图像展示,(画函数的图像的步骤是:列表,描点,连线。)。最后,老师在黑板(电脑)上演示列表,描点,连线的过程,并且,画出取不同的值时,函数的图像。

要求学生描述出指数函数图像的特征,并试着描述出性质。

数学发展的历史表明,每一个重要的数学概念的形成和发展,其中都有丰富的经历,新课程较好的体现了这点。对新课程背景下的学生而言,数学的知识应该是一个数学化的过程,即通过对常识材料进行细致的观察、思考,借助于分析、比较、综合、抽象、概括等思维活动,对常识材料进行去粗取精、去伪存真的精加工。该案例正是从数学研究和数学实验的过程中进行设计。虽然学生的思维不一定真实的重演了人类对数学知识探索的全过程,但确确实实通过实验、观察、比较、分析、归纳、抽象、概括等思维活动,在探索中将数学数学化,从而才使学生对数学学习产生了乐趣,对数学的研究方法有了一定的了解。

虽然学生要学的数学是历史上前人已建构好了的,但对他们而言,仍是全新的、未知的,需要用他们自己的学习活动来再现类似的过程。该案例正是从创设问题情景作为教 ……此处隐藏21400个字……种方法我们就能很快的把一个数的所有因数找出来。那找到什么时候为止呢?请大家看18的最后一对因数是几和几?生:3和6。

师:为什么不接着往下写了?生答。

小结:其实找因数就像我们数学中的相遇问题。最开始是1和18,离得很远,接着是2和9,有点近了,再接下来是3和6,更近了。3和6之间的整数只有4和5,都不是18的因数,所以没必要再往下找。

尝试练习:

师:请大家按照这种有序的一对一对的找的方法试着找一找30和36的所有因数。在作业本上写一写。

师:哪位同学来说说30的因数你是怎么找的? (投影展示)学生说说自己的想法。

师:大家同意他的想法吗?和他一样的请举手。

师:既然大家都用了这种方法,那么老师有一个问题想请教同学们,30的最后一组因数是5和6,找到这儿的时候还需要继续找吗?为什么?

生:因为5和6已经挨着了,它们之间已经没有整数了。

师:说得真好,我们按照一定的顺序,一对一对地找出了30所有的因数。36的因数谁来说一说。生汇报,课件演示。

(出示到6和6时,还找吗?)生:不找了。师:因为…

生:因为6和6已经重合了,它们之间更不可能有其它的整数。师:最后一组出现了两个相同的因数,怎么办?生:我们就可以只写一个。 (演示:去掉第二个)

师:36的因数有哪些?请大家有顺序的说一说。 (生说,课件演示)

四、观察发现因数的特点。(3分)

师:找一个数的因数大家会了吗?生:会了。师:下面老师口述两个数,看看哪个同学能够很快地说出它的所有因数。我们来比一比。师:1的因数有…生:1师:还有吗?生:没有。师:7的因数呢?生:1、7。

师:找一个数的因数的方法大家掌握得非常好,我们一起来看看所找的这些数的因数,它们有什么共同点?(课件出示)生:所有的数的因数都有1。

(课件出示)一个数最小的因数是( 1 ),师:一个数的最大因数是什么?生:它本身。

(课件出示:一个数的最大因数是它本身)

师:既然一个数有最大的因数,那么一个数的因数个数是()。

五、找一个数的倍数。(10分)

师:我们学会了找一个数的因数,那么找一个数的倍数大家会吗?试一个怎么样?生:好。

(课件出示:你能找出多少个2的倍数)

师:同桌相互说着听一听。(师板书:2的倍数有)师:谁来说一说?

生:2,4,6,8,10……(生边说师边板书)师:写得完吗?生:写不完。师:那怎么办?

(引导学生用省略号表示)

一个数的倍数同样可以用集合图表示(点击课件,出示集合图)师:2的倍数我们是找出来了,谁能告诉我,你是用什么方法找得吗?生:2×1=2 2×2=4 2×3=6 2×4=8 2×5=10…

师:找2的倍数我们可以2来分别乘1、2、3、4、5…所得的积就是它的倍数了。找其它数的倍数我们能用这种方法吗?生:能。

师:请大家试着在这条数轴上找出3的倍数。一起说一说。 (课件演示)师:说得完吗?生:说不完。

师:这还有两个数5和7,哪位同学能够很快的说出它们的倍数。(课件出示)

学生汇报。(课件出示)

师:通过上面的例子,你发现一个数的倍数有什么特点吗?生1:一个数的最小倍数是它本身。生2:一个数的倍数个数是无限的。 (课件跟随出示:一个数的最小倍数是它本身。一个数的倍数个数是无限的)

师:今天的新知识即将告一段落,下面的一些题大家看看会做吗?

六、练一练:(3分)

1、投影出示填空题。

① 24的最大因数是(),最小倍数是()

②只有一个因数的数是()

③ 15的因数有()。

④ 6的倍数有()(写出5个)

⑤一个数的因数个数是(),一个数的倍数个数是()。

师:大家说得真棒,我们来看看这几位同学说的对吗?

2、谁说得对?(投影出示)

师:看来凭这几道题要想难倒同学们,还真不容易,不过我还真不想放弃,这还有两道题,大家愿意接受挑战吗?猜一猜(1分)考考你

师;看来我不想放弃都不行了,同学们太聪明了。

七、 小结。(2分)

师:聪明的同学们,谁能说说通过这节课的学习你有什么收获?

八、拓展(3分)

师:既然我们学会了找一个数的因数,那就请同学们把自己编号的所有因数写下来。

生开始写。

师:编号是6的同学请站起来,你真幸运,知道为什么吗?我们一起来看看6的因数。

课件出示。

师:我们如果把最大因数它的本身去掉,从剩下的三个因数中你会发现什么?

生:1+2+3=6

师:这剩下的因数和刚好等于6,也就是说刚好等于这个数的本身。这样的数我们把它叫做完全数,也叫完美数。我们全班同学的编号中大家知道有几个完美数吗?

生:……

师:只有两个。在1到40000000之间只有5个完美数。最早研究完美数的是生活在2500年前的古希腊数学家毕达哥拉斯,到20xx年,人们在无穷无尽的自然数里,一共找出了40个完美数。我们一起来看看前6个完美数。当然,人们至今仍然没有停止寻找完美数的步伐。同学们,知识是无穷无尽的,在知识的海洋里我们也应该有科学家的这种孜孜不倦,认真执著的精神。

数学教学设计15

活动目标:

1.巩固对半圆形和梯形的认识。

2.复习20以内的计数与单双数。

3.能合作设计规则,自主游戏。

活动准备:

在黑板上画出带数字的各种图形,将小猫,小兔,公园画在图形的两侧。

活动过程:

(一)幼儿观察游戏图。

教师:1.图上有谁?它们要去干什么?

2.图上有哪些图形?图形上面有些什么?

(二)交代游戏玩法。

教师:小兔和小猫要去公园,小兔喜欢走单数的梯形,小猫喜欢走双数的带弧形的图形,而且要按从少到多的顺序走到公园,看谁能找出它们的行走路线,很快画出来。

(三)幼儿寻找行走路线。

(四)请部分幼儿画出游戏路线,其他幼儿进行验证。

(五)改编游戏,自主活动。

1.教师:你喜欢这个游戏吗?你觉得什么地方可以改一改?

2.幼儿两两结伴设计数字游戏,然后一起玩一玩。

3.幼儿分组讲解自己设计的游戏,师生讨论的数学内容与玩法,提出改进意见。

4.幼儿改进游戏玩法与规则,继续分组游戏。

5.全班选出最受欢迎的数学游戏,一起玩一玩。

课后反思:

本活动把图形与计数,单双数有机地联系在一起,幼儿按单双数的多少顺序进行排序,从而找到行走的路线;在此基础上进一步改进规则,自主游戏。

《数学教学设计(精选15篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式